IZPIT IZ MATEMATIKE II
1 Resi sistem enacb za tisto vrednost parametra k, ko ima sistem neskončno mnogo rešitev. Kdaj ima sistem enolicno resitev, kdaj je protisloven?
2 Zapiši enacbo ravnine, ki gre skozi tri, s koordinatami podane tocke. Nato pa zapiši enacbo premice, ki gre skozi izhodišce in je pravokotna na izracunano ravnino. Tocke so:
3 Linearna transformacija preslika bazicna vektorja v (4,2) in (3,3).
a. Kam preslika vektor (-2,0)?
b. Kaj se preslika v vektor (0,1)?
Napiši še matriko transformacije in njeno inverzno matriko.
4 Napiši Taylorjevo vrsto do vkljucno tretje potence x-sa pri razvoju okoli tocke 0 in s temi cleni izracunaj priblizno vrednost integrala funkcije (f(x)-1)/x na intervalu [0,1]. Funkcija f(x) je:
5 Nariši graf funkcije a0+ a1 cosx + b1 sinx, ki je delna vsota Fourierove vrste funkcije f(x)=2 za x, ki je absolutno manj kot π/6 in 0 drugje, s periodo 2π:
6 Reši diferencialno enacbo pri začetnih vrednostih y(0)=0, y'(0)=1:
7 Poišči splošno rešitev diferencialne enacbe:
8 Izracunaj in analiziraj stacionarne tocke funkcije f(x,y), ki je podana s spodnjim izrazom:
9 Narisi nivojske krivulje z=0, z=1, z=2 in z=3, kjer je z funkcija spremenljivk x in y, podana z izrazom:
Z uporabo narisanih izoklin narisi priblizno resitev diferencialne enacbe y'=f(x,y), ki gre skozi tocko (-4,0).
10. a) Nastej nekaj potrebnih pogojev, da lahko funkcijo razvijemo v Taylorjevo vrsto.
b) Kaj je splosna resitev diferencialne enacbe 1. reda?
c) Kaj je lastni vektor matrike A?
d) Kaj je majoranta za vrsto?
e) Kaj je partikularna resitev diferencialne enacbe?
Created by Mathematica (May 21, 2007) |