IZPIT IZ MATEMATIKE II

1     Resi sistem enacb za tisto vrednost parametra k, ko ima sistem neskončno mnogo rešitev. Kdaj ima sistem enolicno resitev, kdaj je protisloven?

[Graphics:HTMLFiles/7Q_1.gif]

2     Dane tri mnozice predstavljajo smerni vektor dveh vzporednih premic in po eno tocko na vsaki od njih. Zapiši enacbo ravnine, ki vsebuje ti dve premici. Nato pa zapiši enacbo premice, ki gre skozi izhodišce in je pravokotna na izracunano ravnino:

[Graphics:HTMLFiles/7Q_2.gif]

3     Linearna transformacija preslika bazicna vektorja v (-1,2)  in (1,-1).   
a. Kam preslika vektor (-2,-2)?
b. Kaj se preslika v vektor (2,0)?
Napiši še matriko transformacije in njeno inverzno matriko.

4     Napiši prve 3 clene binomske vrste za priblizni izracun n-tega korena pri n=2:

[Graphics:HTMLFiles/7Q_3.gif]

5     Nariši graf funkcije  a0+ a1 cosx + b1 sinx, ki je delna vsota Fourierove vrste funkcije f(x)=-1 za negativen x, ki je absolutno manj kot π/4 in je 1 za poziteven x, ki je absolutno manj kot π/4 in 0 drugje, s periodo 2π:

[Graphics:HTMLFiles/7Q_4.gif]

6    Reši diferencialno enacbo pri začetnih vrednostih y(0)=0, y'(0)=1:

[Graphics:HTMLFiles/7Q_5.gif]

7    Poišči splošno rešitev diferencialne enacbe:

[Graphics:HTMLFiles/7Q_6.gif]

8    Izracunaj in analiziraj stacionarne tocke funkcije f(x,y), ki je podana s spodnjim izrazom:

[Graphics:HTMLFiles/7Q_7.gif]

9     Narisi nivojske krivulje z=0, z=1, z=2 in z=3, kjer je z funkcija spremenljivk x in y, podana z izrazom:

[Graphics:HTMLFiles/7Q_8.gif]

Z uporabo narisanih izoklin narisi priblizno resitev diferencialne enacbe y'=f(x,y), ki gre skozi tocko (-4,1).

10.    a) Kaj je zacetni problem za diferencialno enacbo 1. reda?
    b) Kaj je totalni diferencial funkcije f(x,y)?
    c) Kdaj so trije vektorji v prostoru linearno neodvisni?
    d) Kako dobimo ortogonalne trajektorije na dano druzino krivulj?
    e) Kako izracunamo konvergencni radij vrste?


Created by Mathematica  (May 21, 2007) Valid XHTML 1.1!