Mazes on Uniform Polyhedra

Introduction

Let as take an example. We are given a uniform polyhedron.

rhombicuboctahedron

 ${4, 3, 4, 4}$

In Mathematica the polyhedron is given by a list of faces and with a list of koordinates of vertices [Roman E. Maeder, The Mathematica Programmer II, Academic Press1996]. The list of faces consists of a list of lists, where a face is represented by a list of vertices, which is given by a matrix. Let us show the first five faces:

The nest two figures represent faces and vertices. The polyhedron is projected onto supescribed sphere and the sphere is projected by a cartographic projection.

The problem is to find the path from the black dot to gray dot, where thick lines represent walls of a maze.

The solution is given by a list of faces passed from the black to gray dot.

Problems

tetrahedron ${3,3,3}$

octahedron $\{3, 3, 3, 3\}$

cube {4, 4, 4}

icosahedron ${3, 3, 3, 3, 3}$

dodecahedron {5, 5, 5}

truncated tetrahedron

{6, 6, 3}

 $cuboctahedron \\ \{3,4,3,4\}$

truncated octahedron

{6, 6, 4}

truncated cube $\{8, 8, 3\}$

truncated cuboctahedron

{4, 6, 8}

snub cube ${3, 3, 3, 3, 4}$

icosidodecahedron $\{3, 5, 3, 5\}$

truncated icosahedron

{6, 6, 5}

truncated dodecahedron

{10, 10, 3}

rhombicosidodecahedron

{4, 3, 4, 5}

truncated icosidodecahedron

{4, 6, 10}

snub dodecahedron $\{3, 3, 3, 3, 5\}$

pentagonal prism {4, 4, 5}

pentagonal antiprism ${3,3,3,5}$

small stellated dodecahedron

$$\left\{\frac{5}{2}, \frac{5}{2}, \frac{5}{2}, \frac{5}{2}, \frac{5}{2}\right\}$$

great dodecahedron

Solutions

tetrahedron ${3,3,3}$

octahedron $\{3, 3, 3, 3\}$

cube {4, 4, 4}

icosahedron ${3, 3, 3, 3, 3}$

dodecahedron {5, 5, 5}

truncated tetrahedron $\{6, 6, 3\}$

 $\qquad \qquad \text{cuboctahedron} \\ \qquad \{3,4,3,4\}$

truncated octahedron $\{6, 6, 4\}$

truncated cube $\{8, 8, 3\}$

rhombicuboctahedron {4, 3, 4, 4}

truncated cuboctahedron

{4, 6, 8}

snub cube ${3, 3, 3, 3, 4}$

icosidodecahedron $\{3, 5, 3, 5\}$

truncated icosahedron

{6, 6, 5}

truncated dodecahedron

rhombicosidodecahedron

{4, 3, 4, 5}

truncated icosidodecahedron

{4, 6, 10}

snub dodecahedron $\{3, 3, 3, 3, 5\}$

pentagonal prism {4, 4, 5}

pentagonal antiprism

 ${3, 3, 3, 5}$

small stellated dodecahedron

$$\left\{\frac{5}{2}, \frac{5}{2}, \frac{5}{2}, \frac{5}{2}, \frac{5}{2}\right\}$$

great dodecahedron $\frac{1}{2}\left\{5,\,5,\,5,\,5\right\}$

