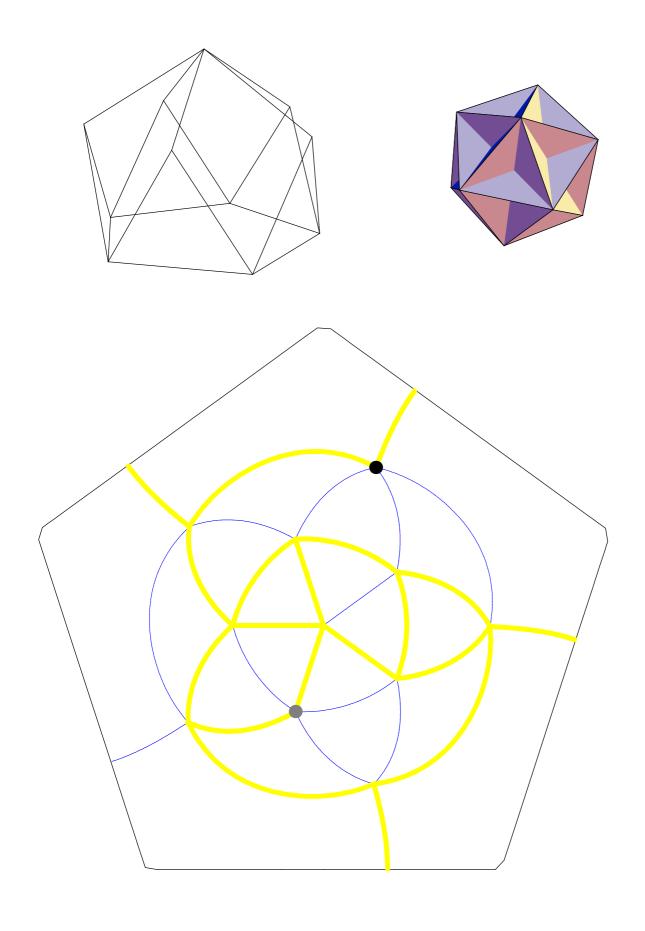
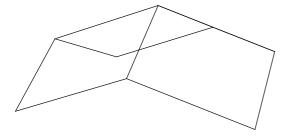
Mazes on Uniform Polyhedra



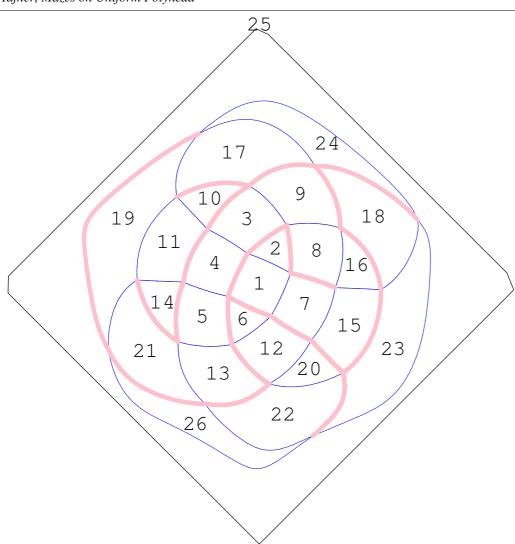
Introduction

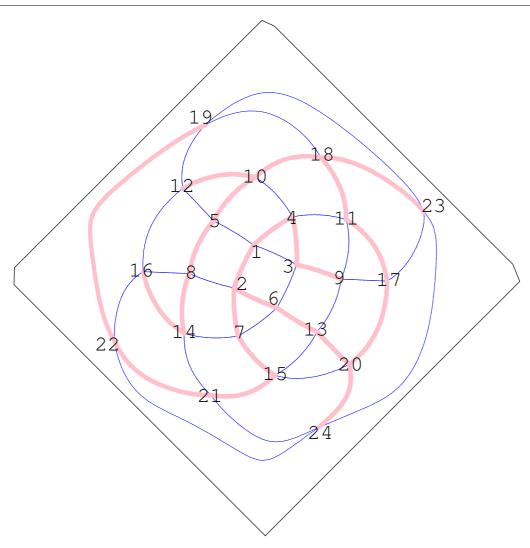
Let as take an example. We are given a uniform polyhedron.



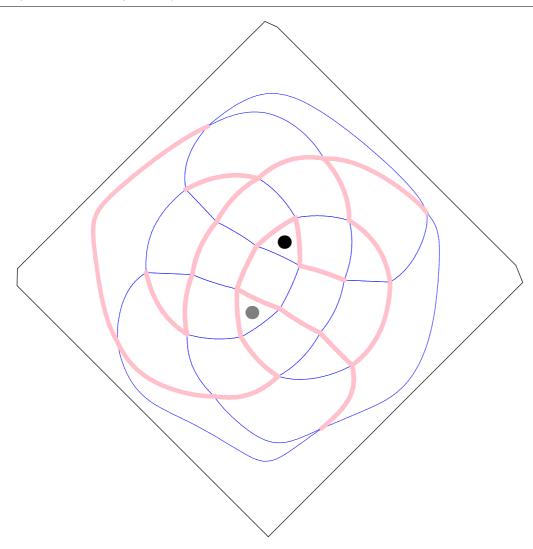
In Mathematica the polyhedron is given by a list of faces and with a list of koordinates of vertices [Roman E. Maeder, The Mathematica Programmer II, Academic Press1996]. The list of faces consists of a list of lists, where a face is represented by a list of vertices, which is given by a matrix. Let us show the first five faces:

The nest two figures represent faces and vertices. The polyhedron is projected onto supescribed sphere and the sphere is projected by a cartographic projection.

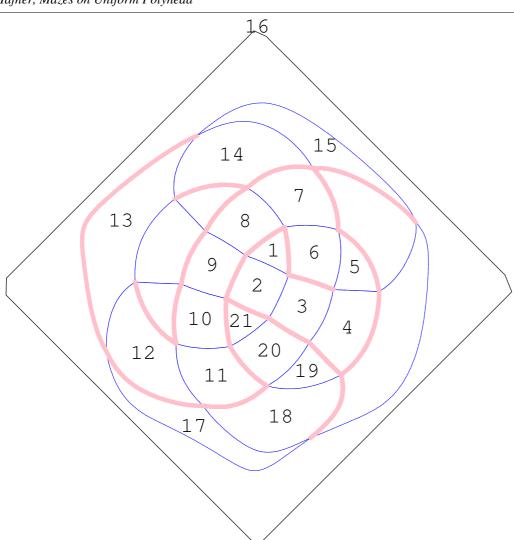




The problem is to find the path from the black dot to gray dot, where thick lines represent walls of a maze.

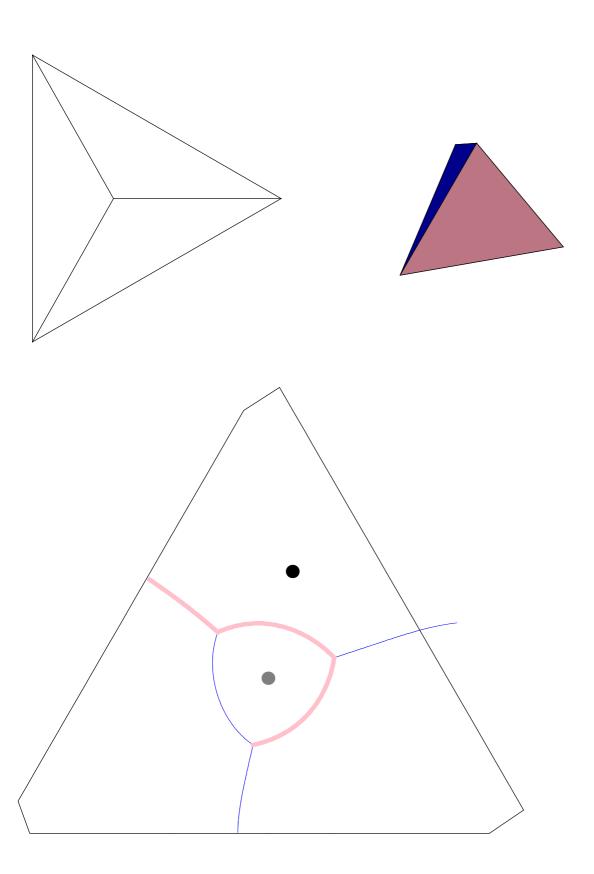


The solution is given by a list of faces passed from the black to gray dot.

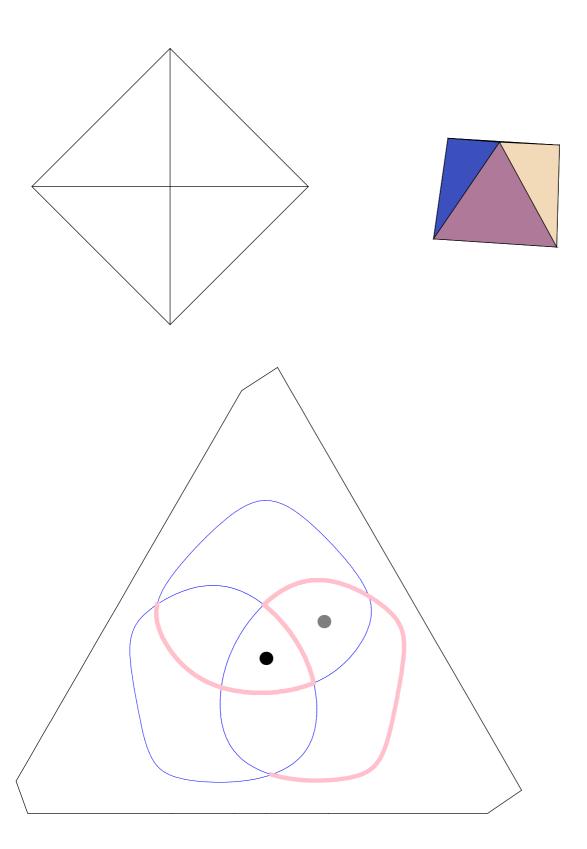


Problems

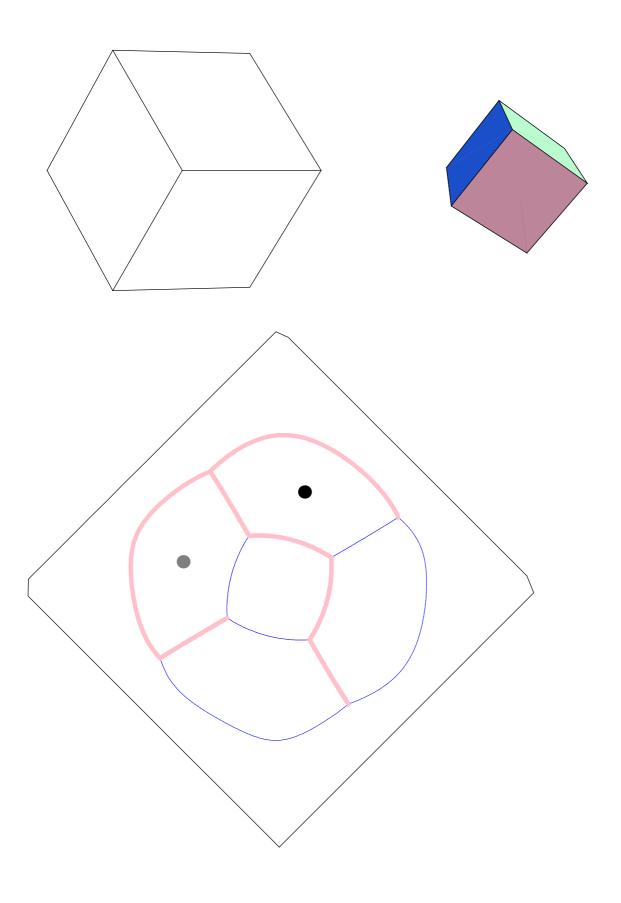
tetrahedron ${3,3,3}$



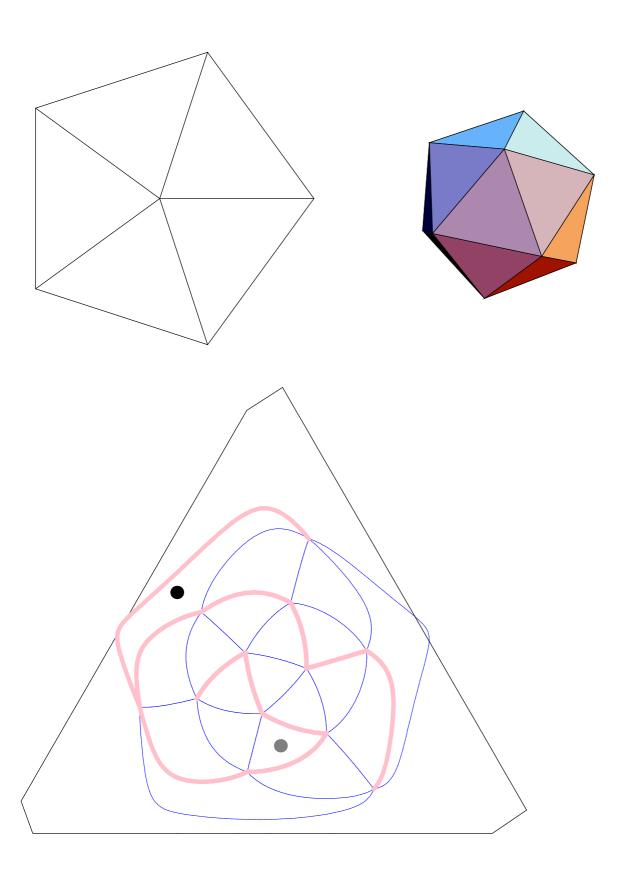
{3, 3, 3, 3} octahedron



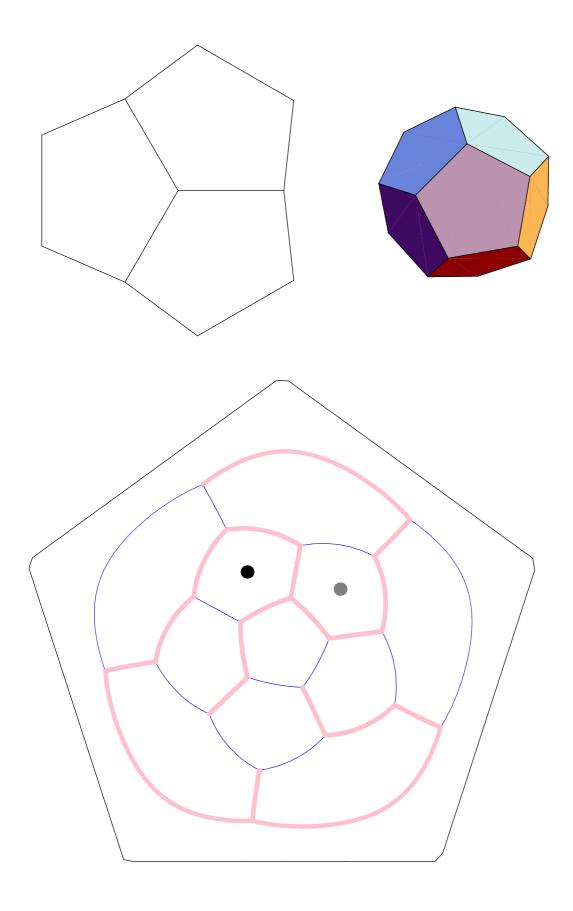
cube {4, 4, 4}



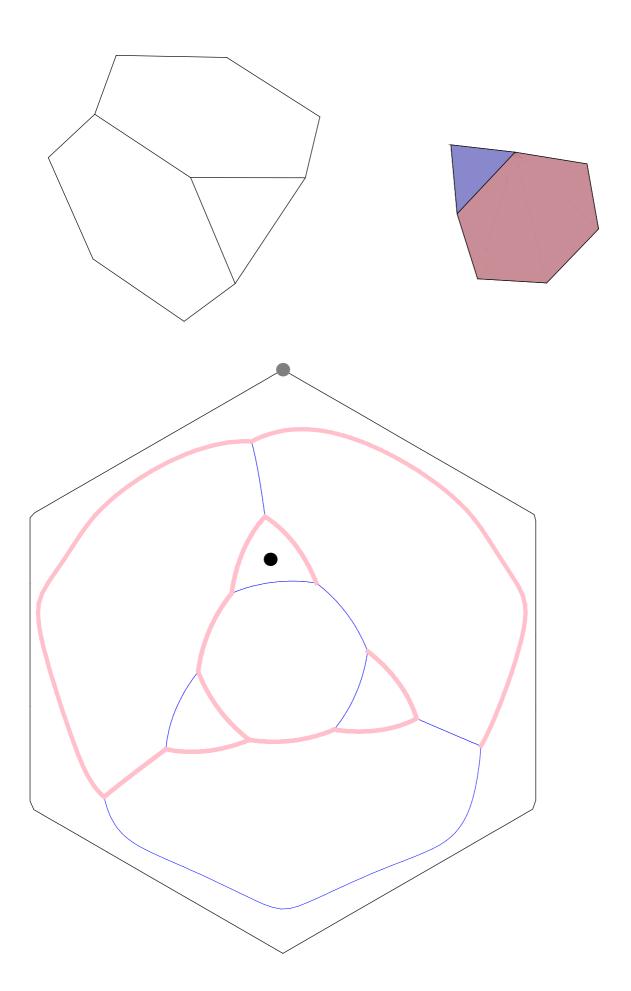
icosahedron ${3, 3, 3, 3, 3}$



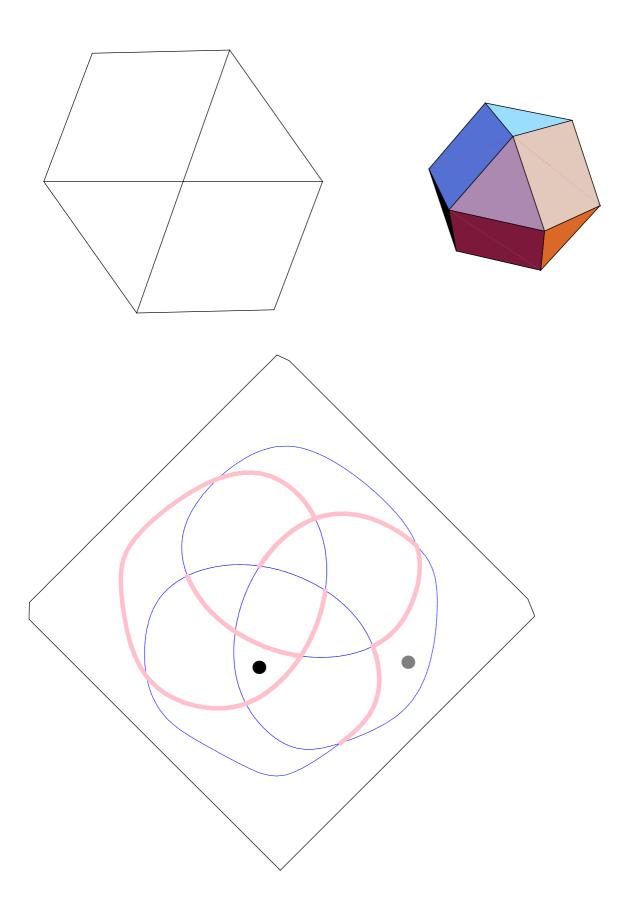
dodecahedron {5, 5, 5}



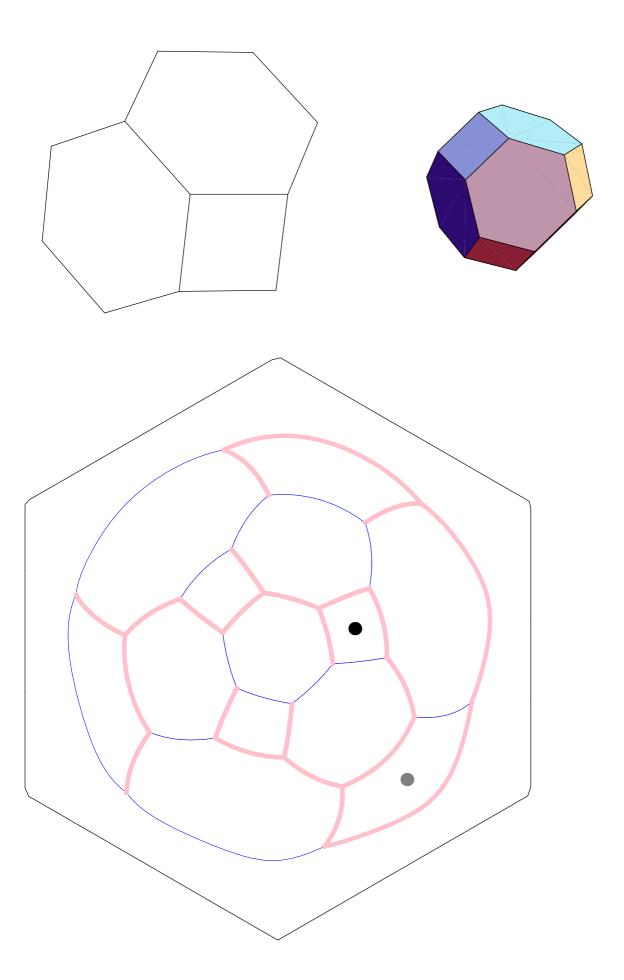
truncated tetrahedron $\{6, 6, 3\}$



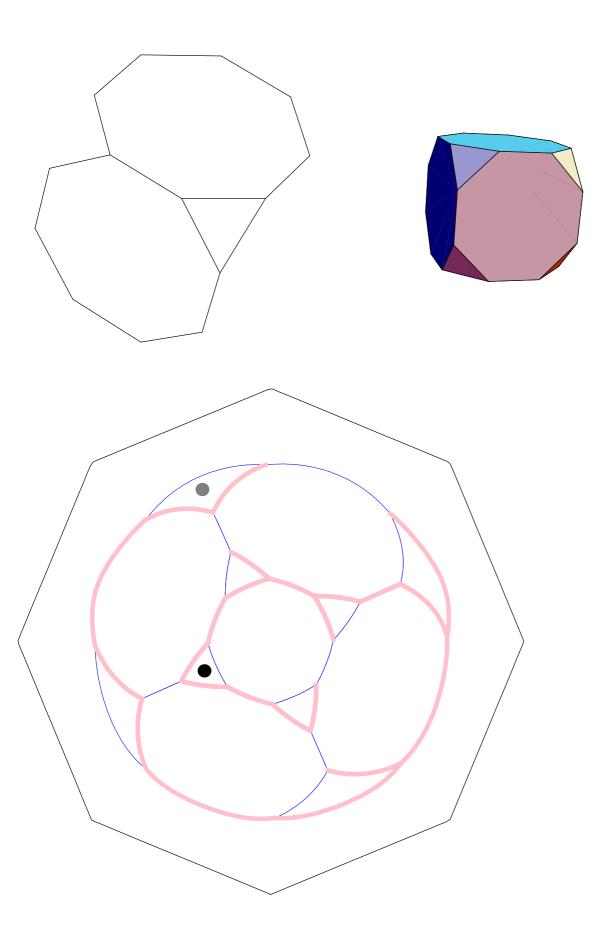
 $cuboctahedron \\ \{3,4,3,4\}$

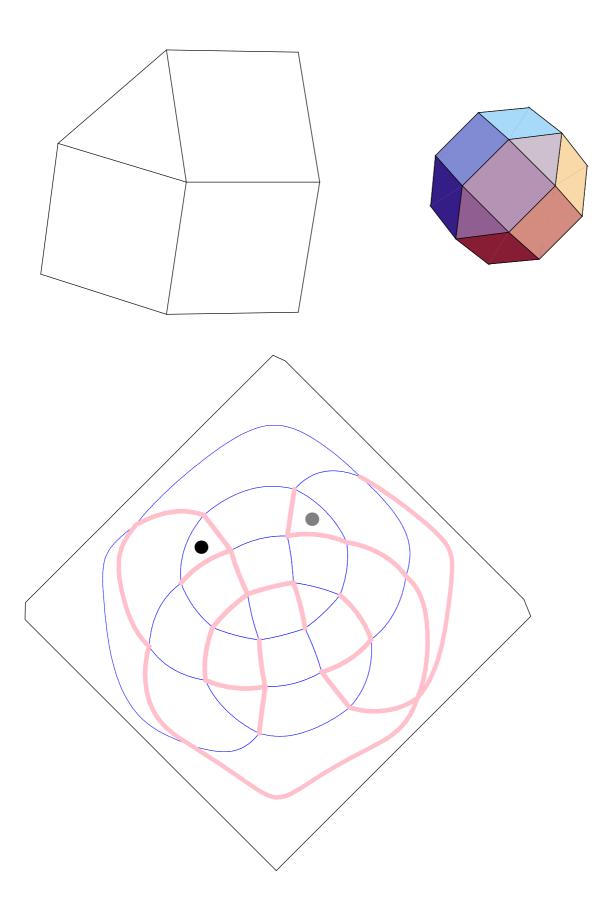


truncated octahedron {6, 6, 4}



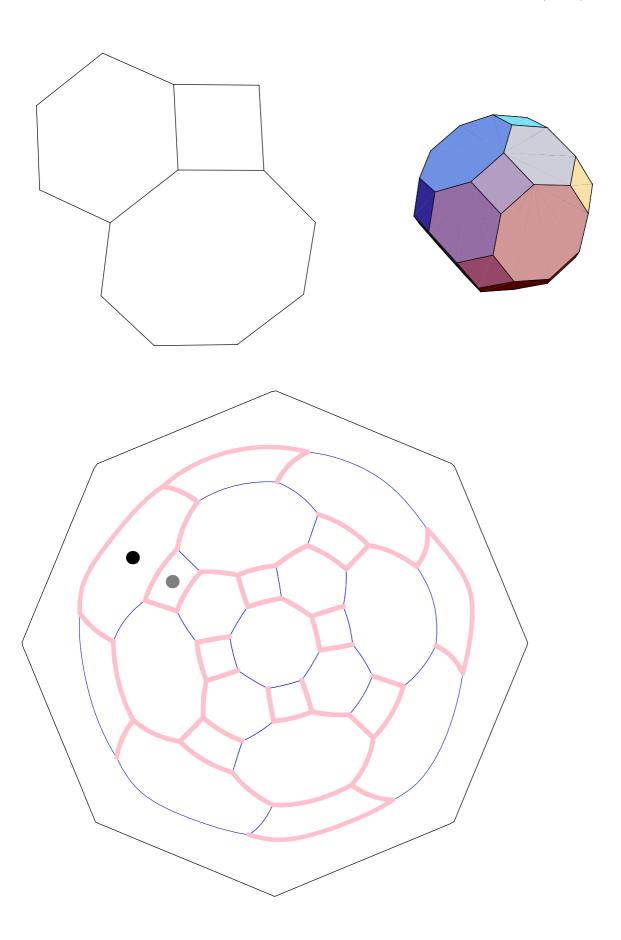
truncated cube $\{8, 8, 3\}$



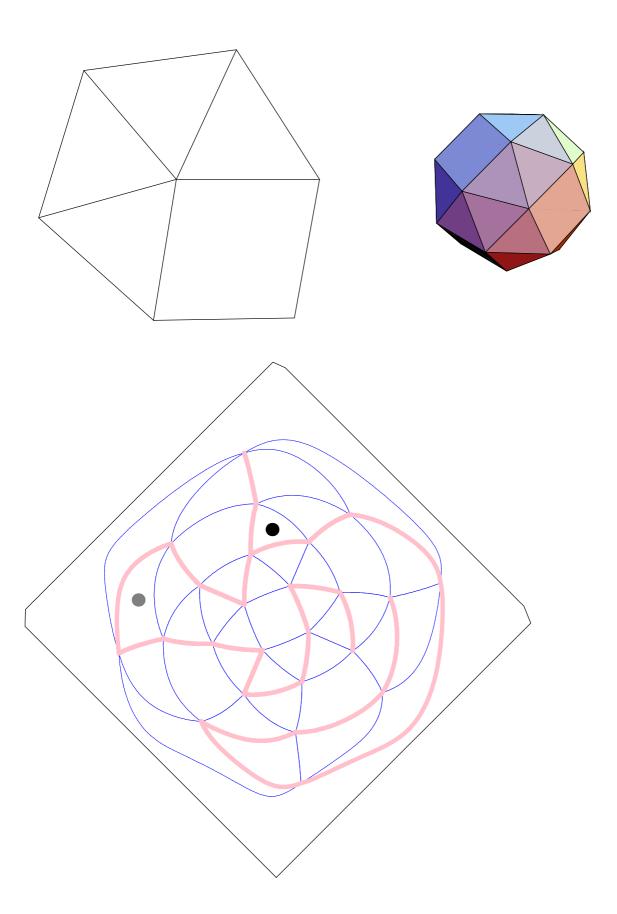


truncated cuboctahedron

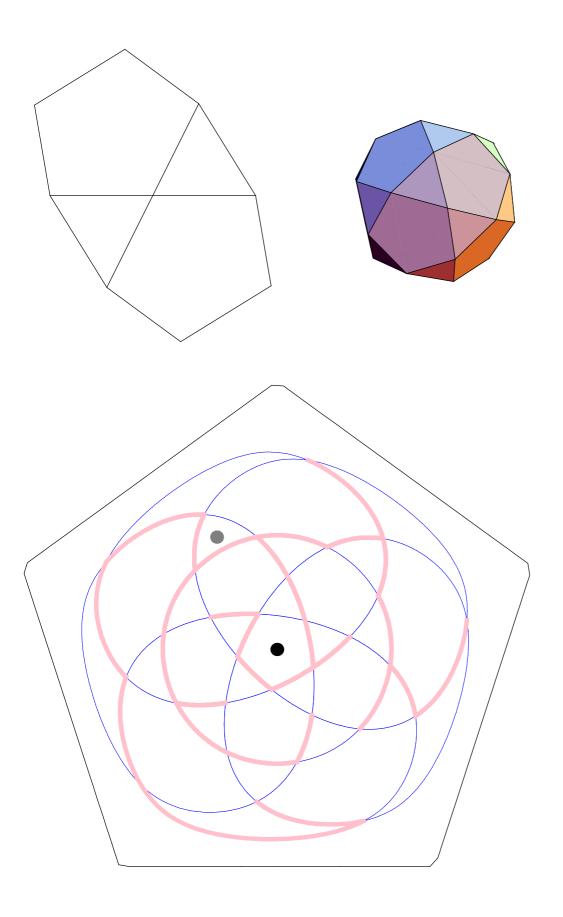
{4, 6, 8}



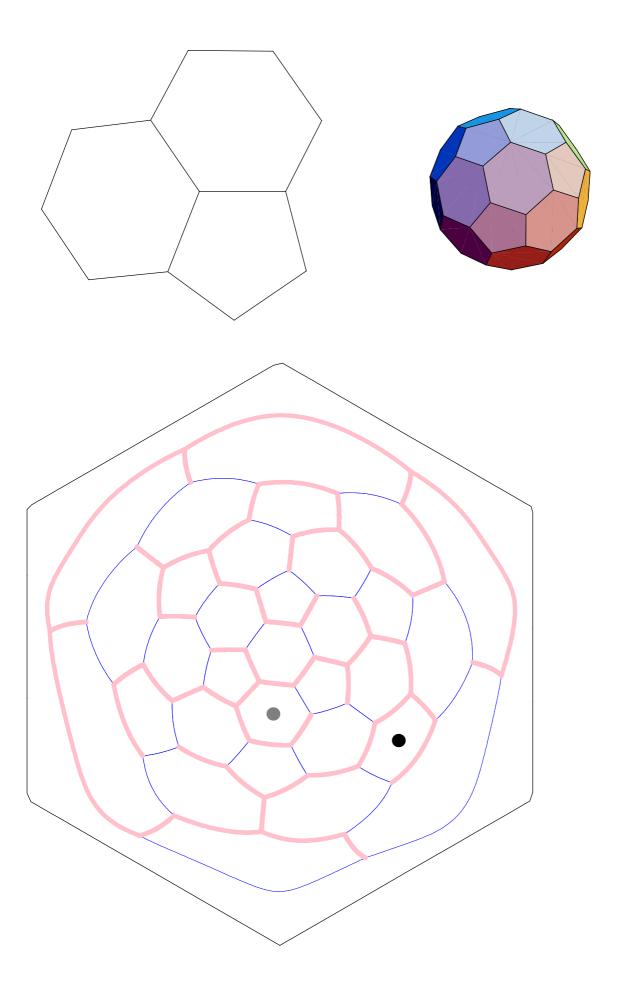
snub cube ${3, 3, 3, 3, 4}$



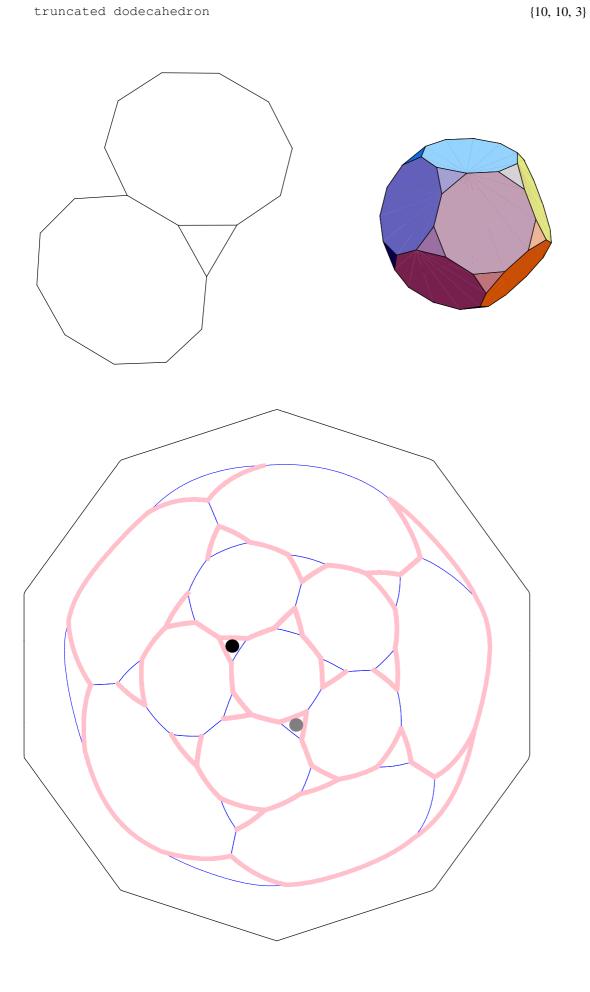
icosidodecahedron $\{3, 5, 3, 5\}$



truncated icosahedron $\{6, 6, 5\}$

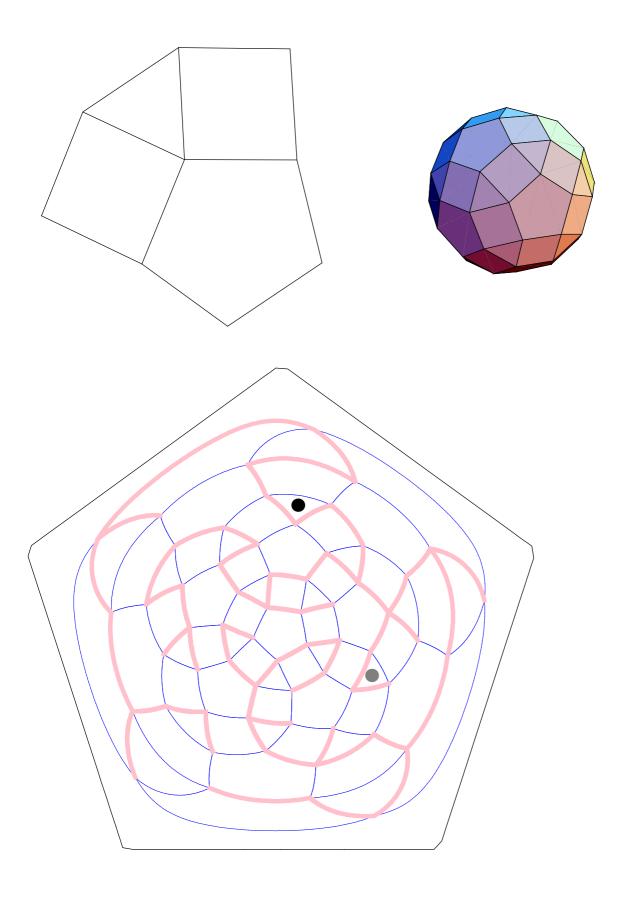


truncated dodecahedron



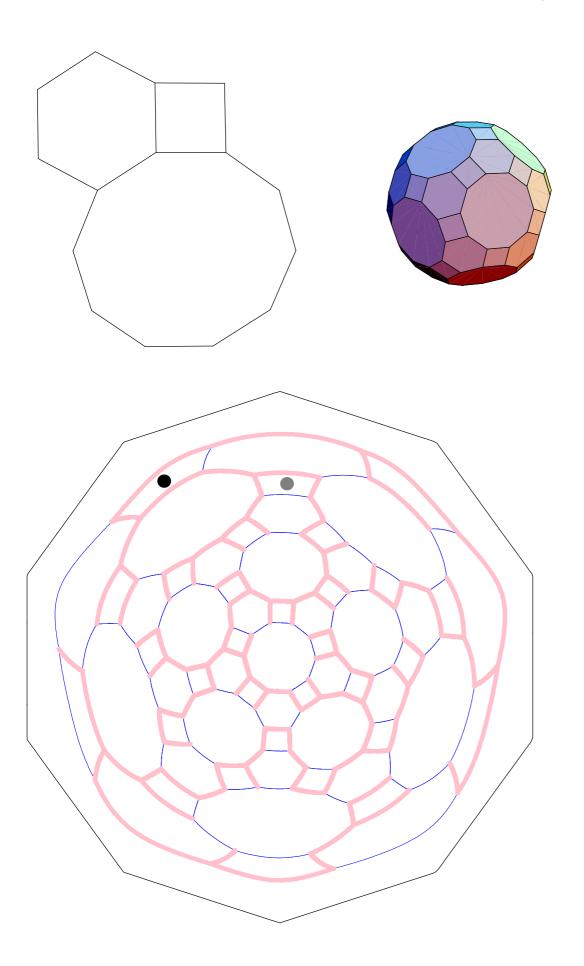
rhombicosidodecahedron

{4, 3, 4, 5}



truncated icosidodecahedron

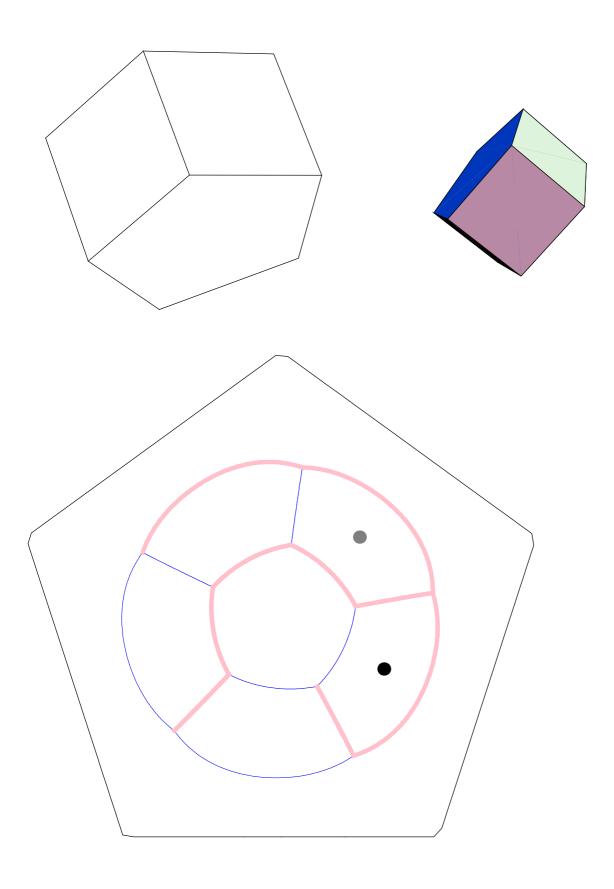
{4, 6, 10}



snub dodecahedron $\{3, 3, 3, 3, 5\}$

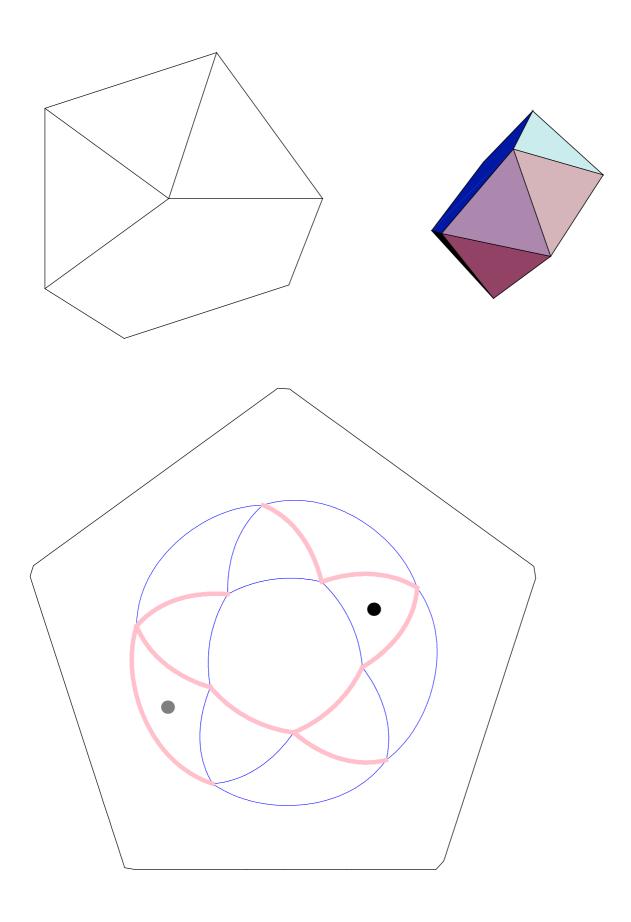


pentagonal prism $\{4, 4, 5\}$



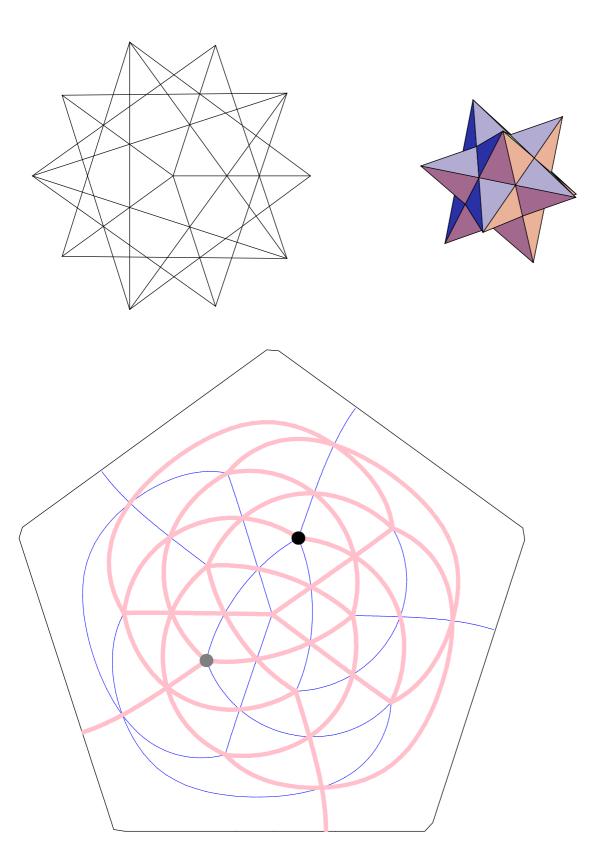
pentagonal antiprism

 ${3, 3, 3, 5}$



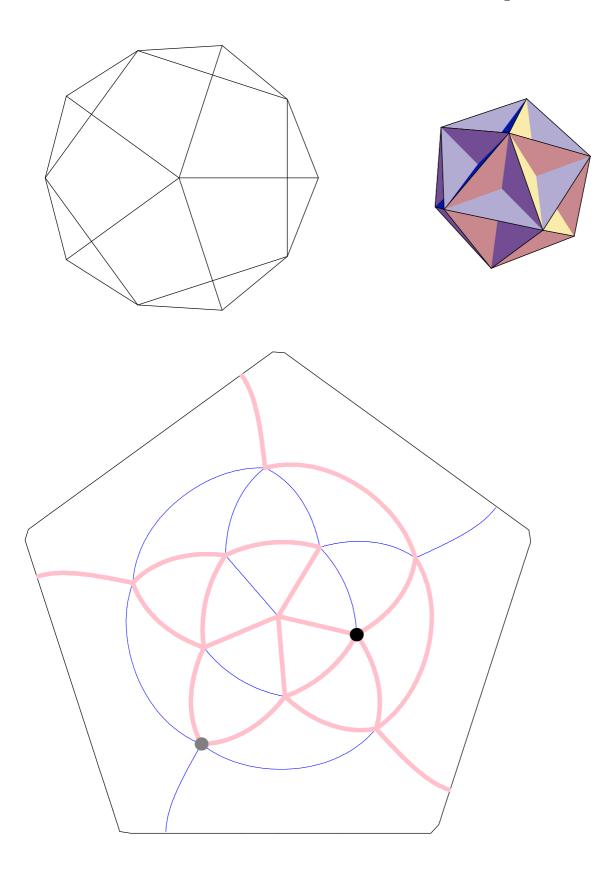
small stellated dodecahedron

$$\left\{\frac{5}{2}, \frac{5}{2}, \frac{5}{2}, \frac{5}{2}, \frac{5}{2}\right\}$$



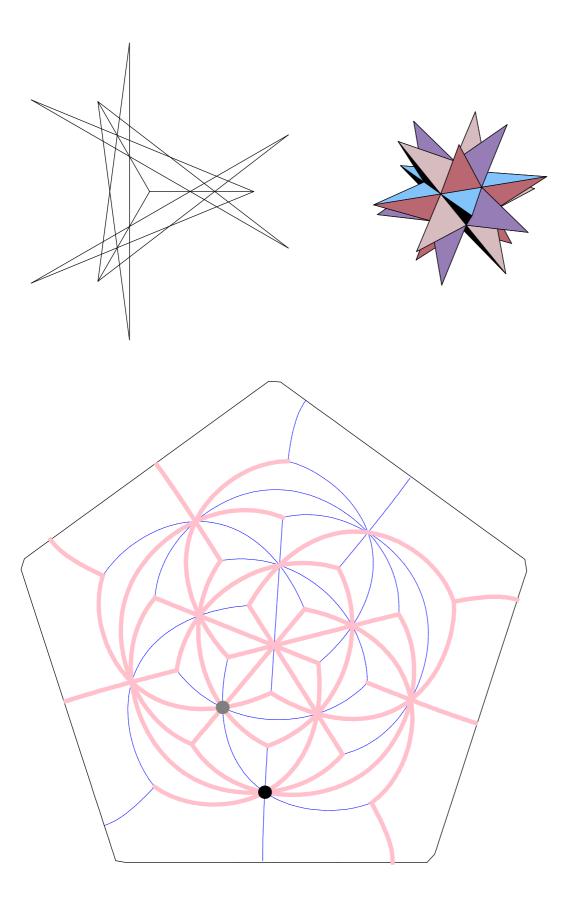
great dodecahedron

 $\frac{1}{2}$ {5, 5, 5, 5, 5}



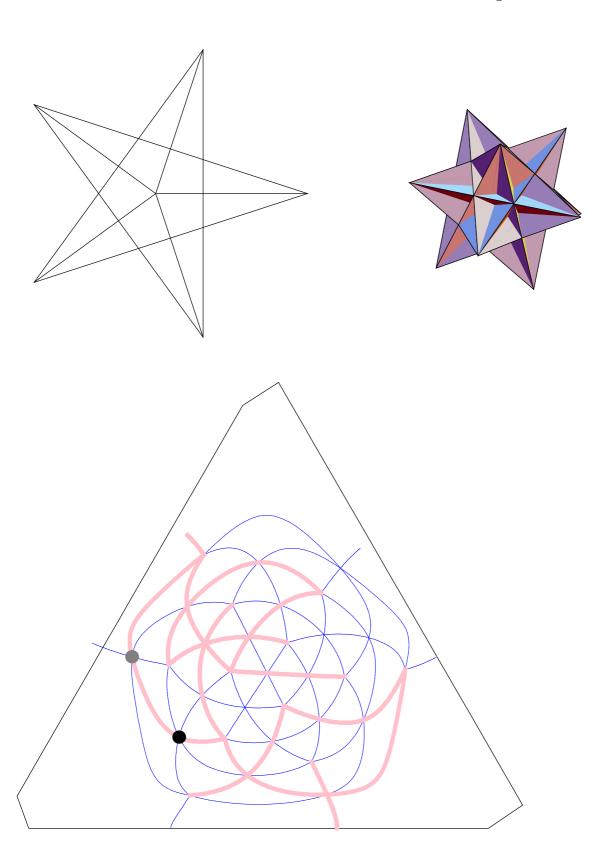
great stellated dodecahedron

$$\left\{\frac{5}{2}, \frac{5}{2}, \frac{5}{2}\right\}$$



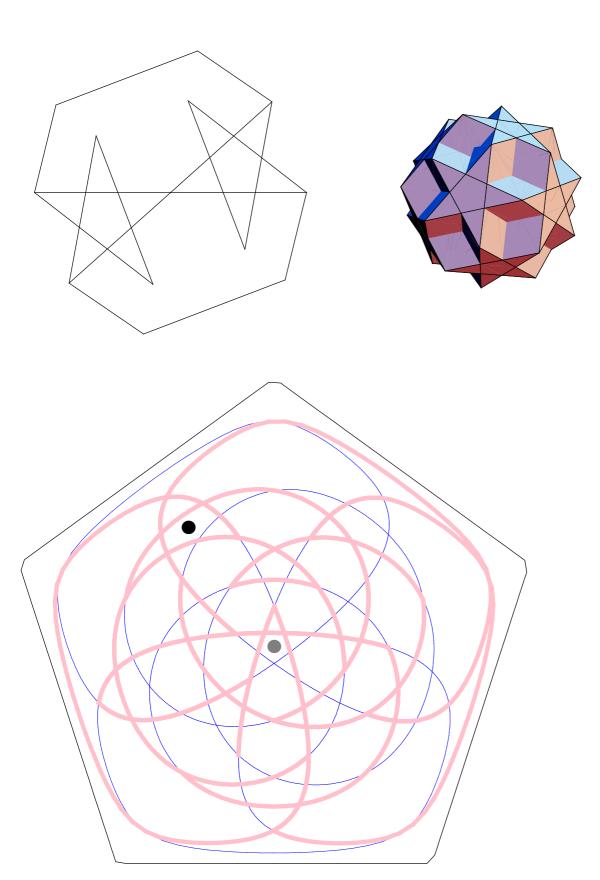
great icosahedron

 $\frac{1}{2}$ {3, 3, 3, 3, 3}



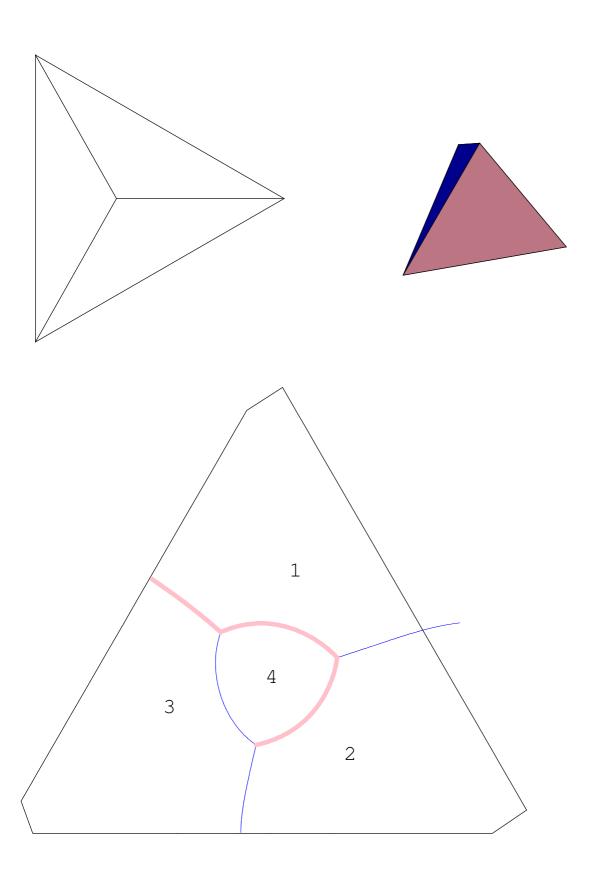
dodecadodecahedron

$$\left\{\frac{5}{2}, 5, \frac{5}{2}, 5\right\}$$

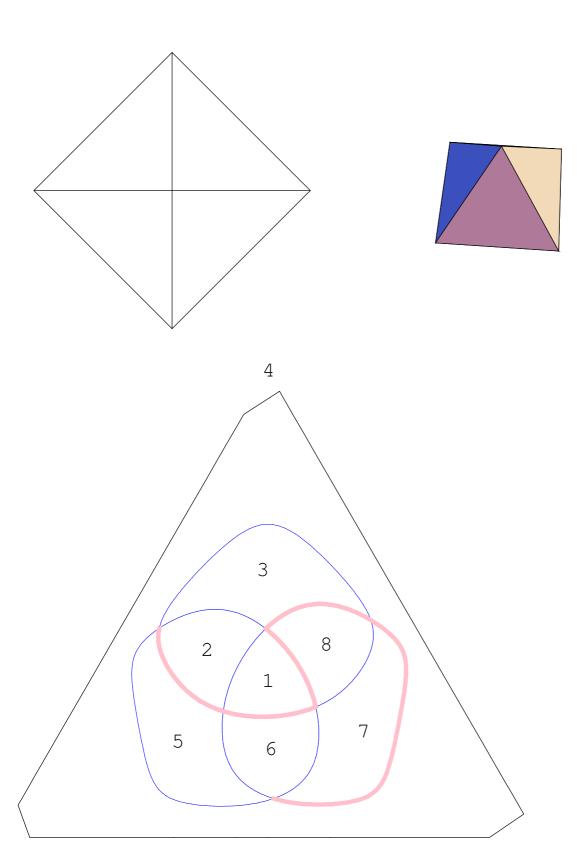


Solutions

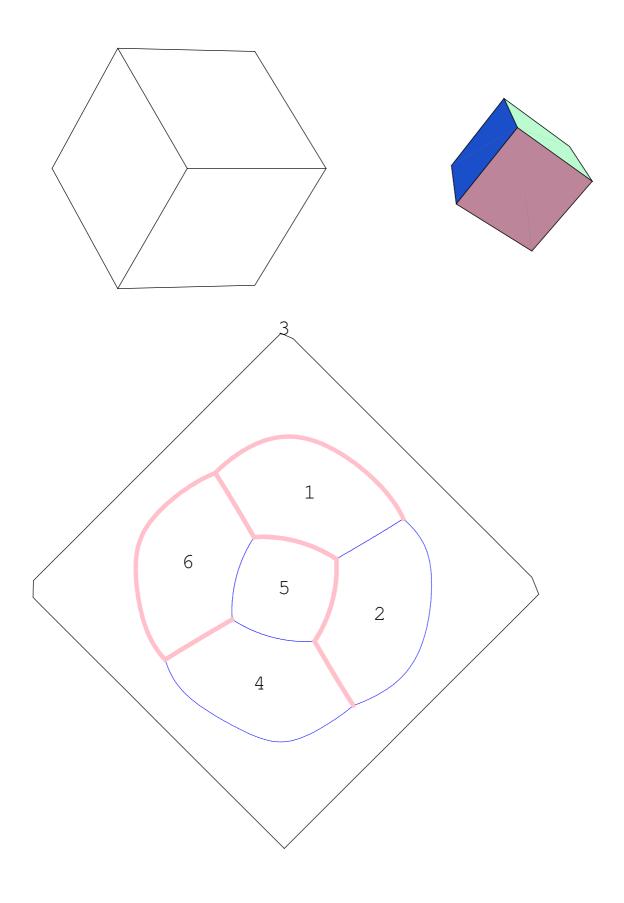
tetrahedron $\{3, 3, 3\}$



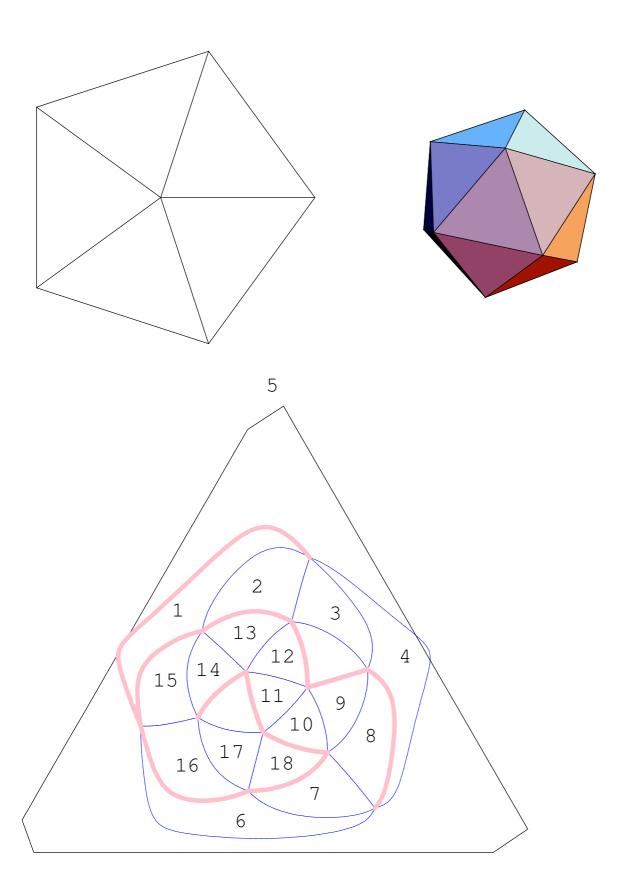
octahedron $\{3, 3, 3, 3\}$



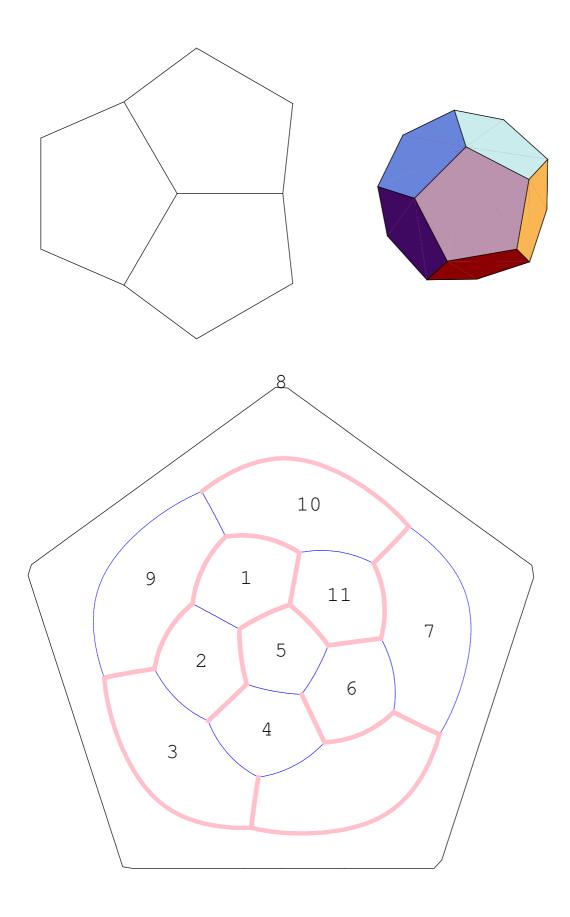
cube {4, 4, 4}



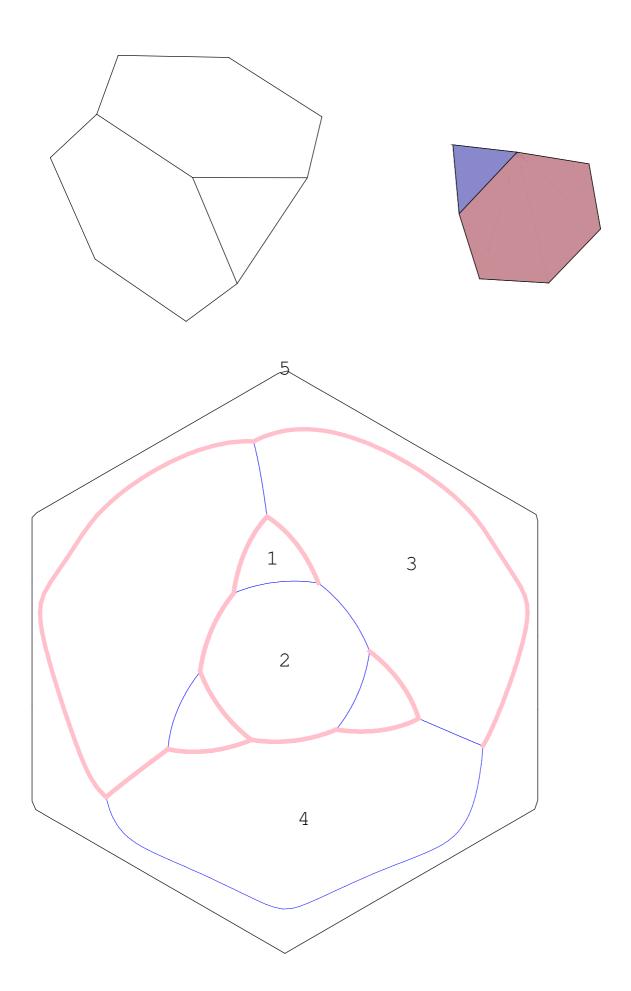
{3, 3, 3, 3, 3} icosahedron



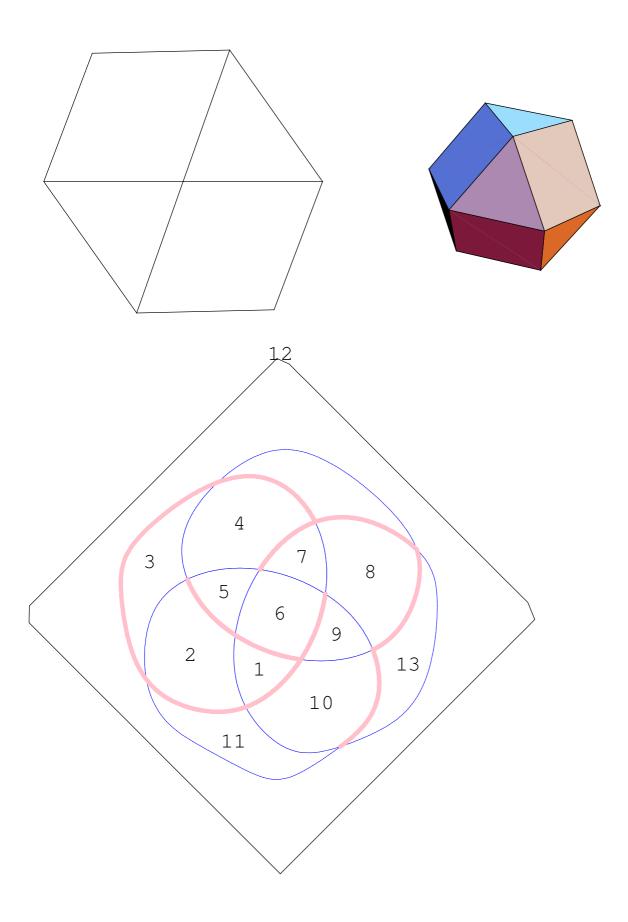
dodecahedron {5, 5, 5}



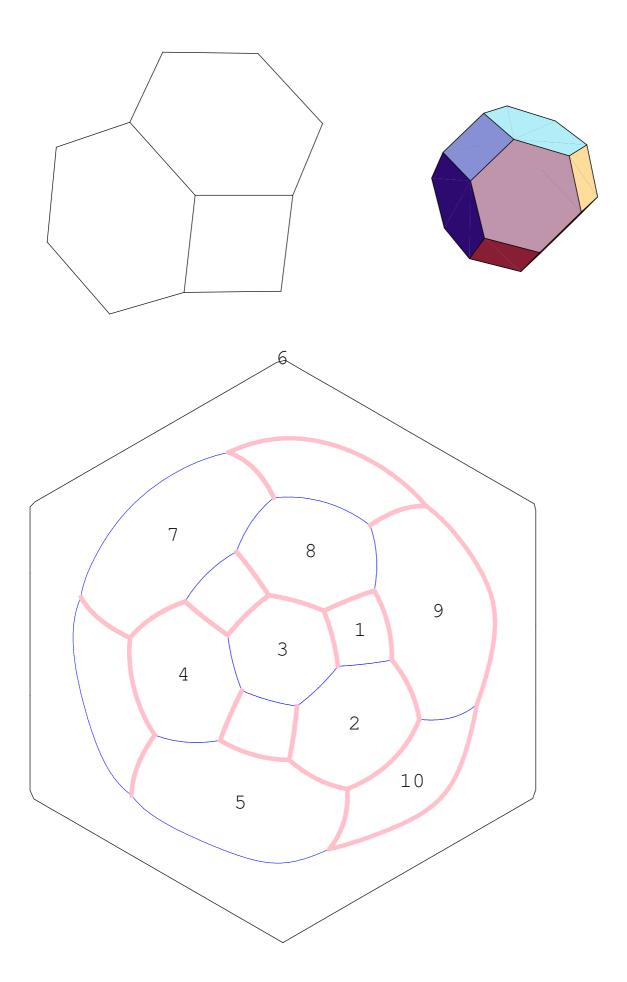
truncated tetrahedron $\{6, 6, 3\}$



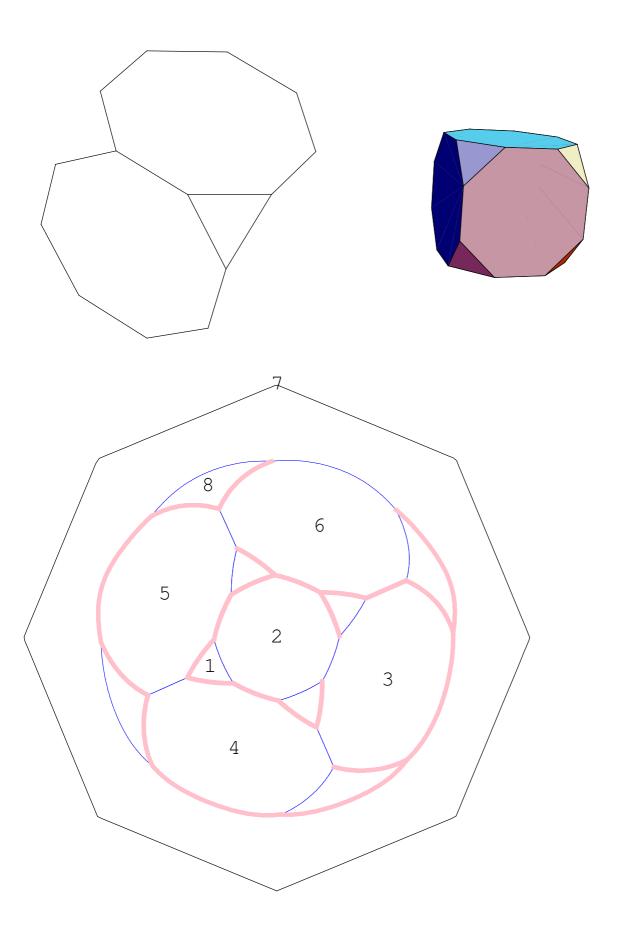
 $cuboctahedron \\ \{3,4,3,4\}$



truncated octahedron $\{6, 6, 4\}$

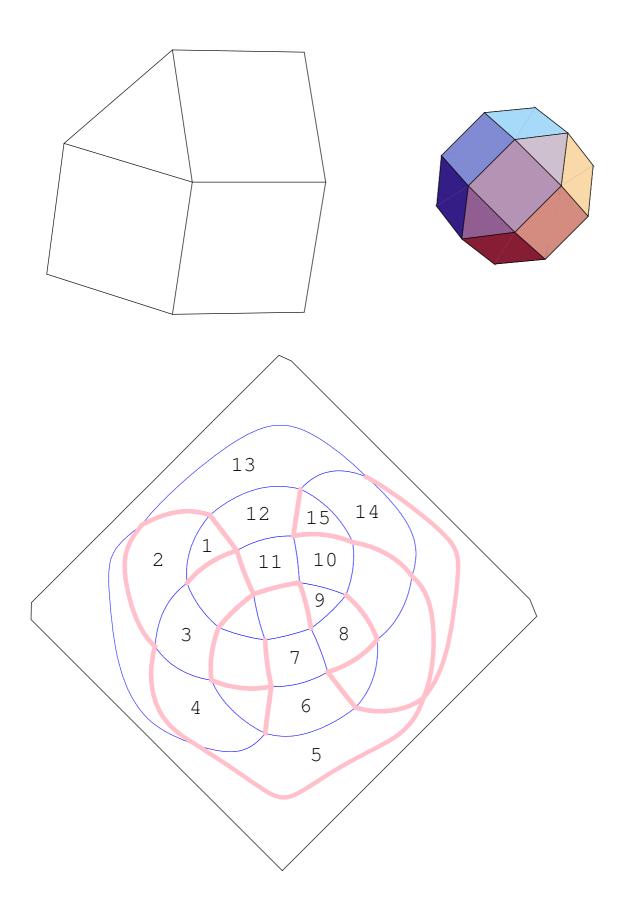


truncated cube $\{8, 8, 3\}$

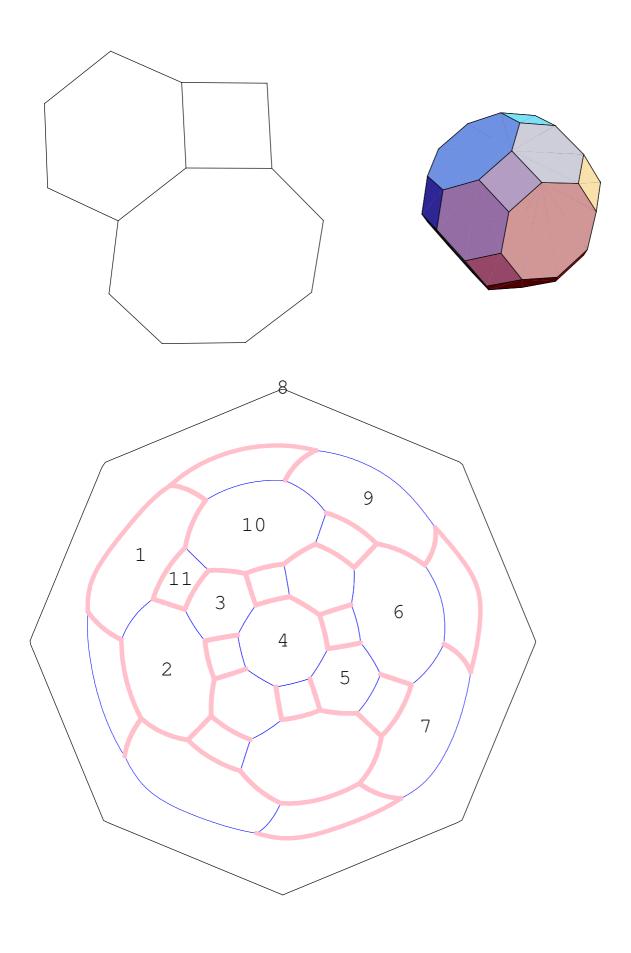


rhombicuboctahedron

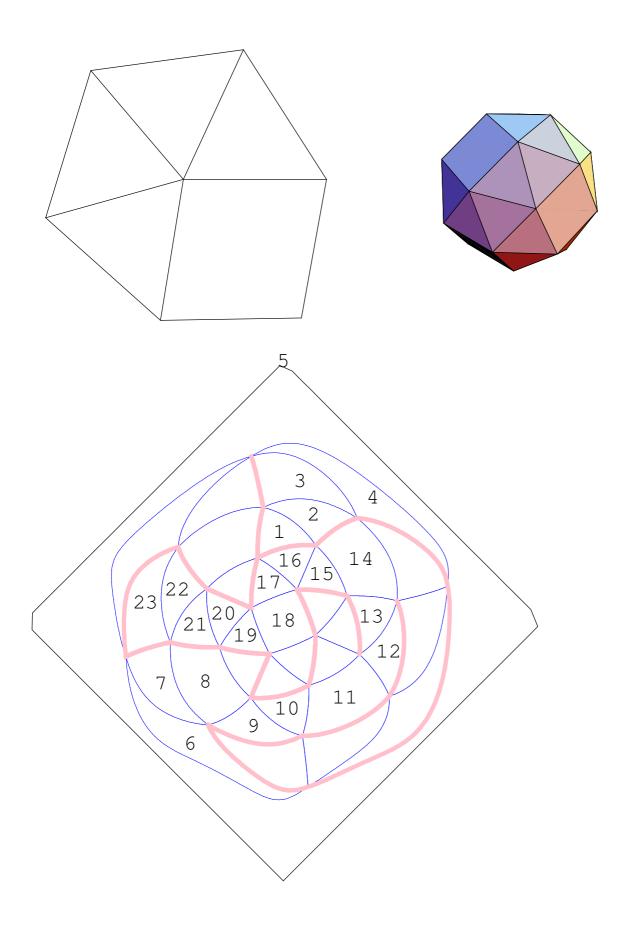
 $\{4, 3, 4, 4\}$



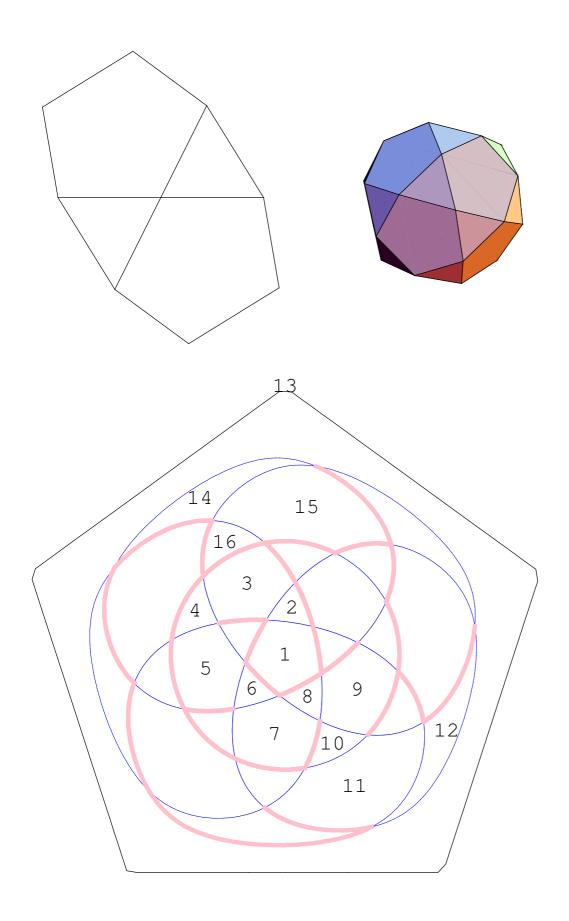
{4, 6, 8} truncated cuboctahedron



snub cube ${3, 3, 3, 3, 4}$

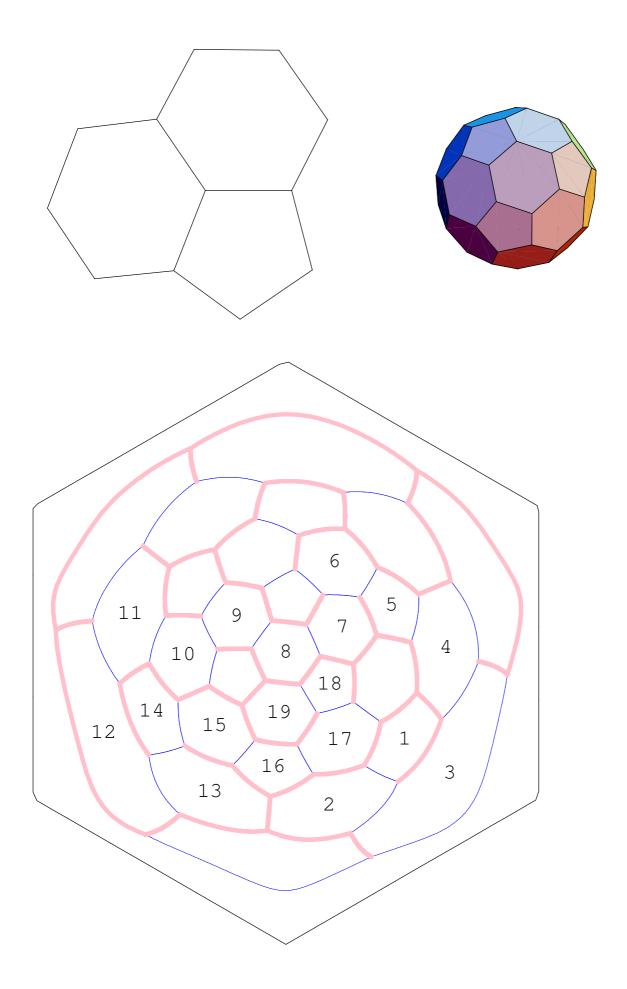


icosidodecahedron $\{3, 5, 3, 5\}$



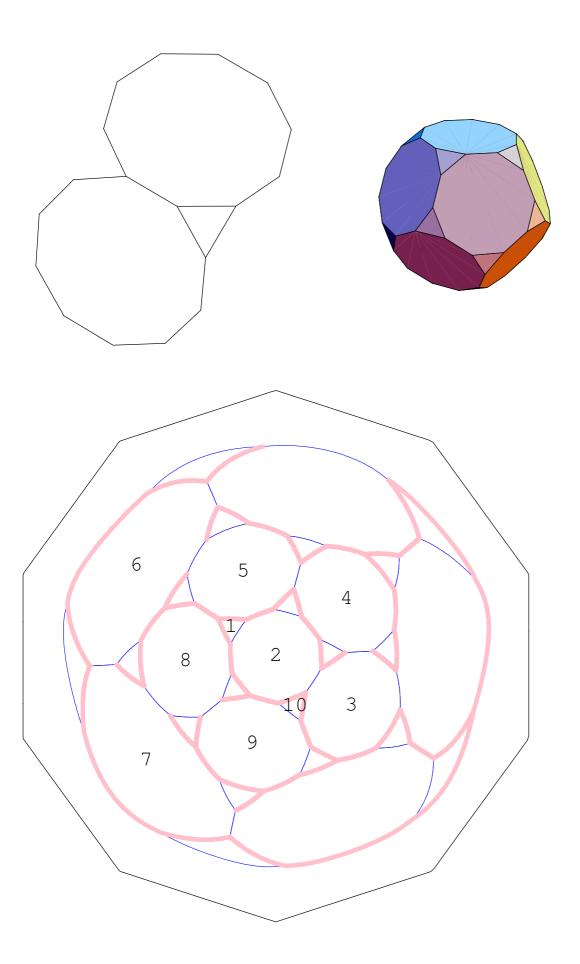
truncated icosahedron

 $\{6, 6, 5\}$

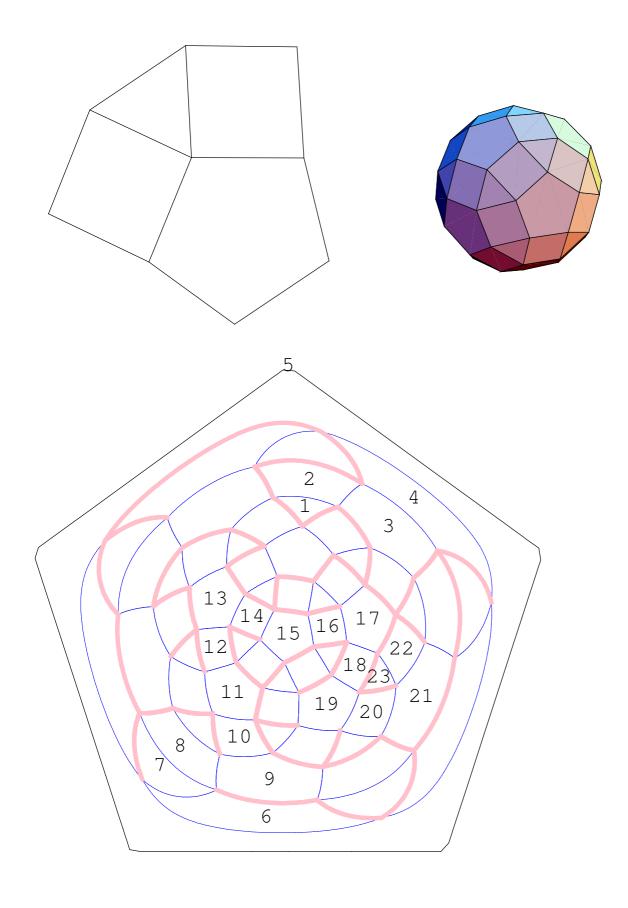


truncated dodecahedron

{10, 10, 3}

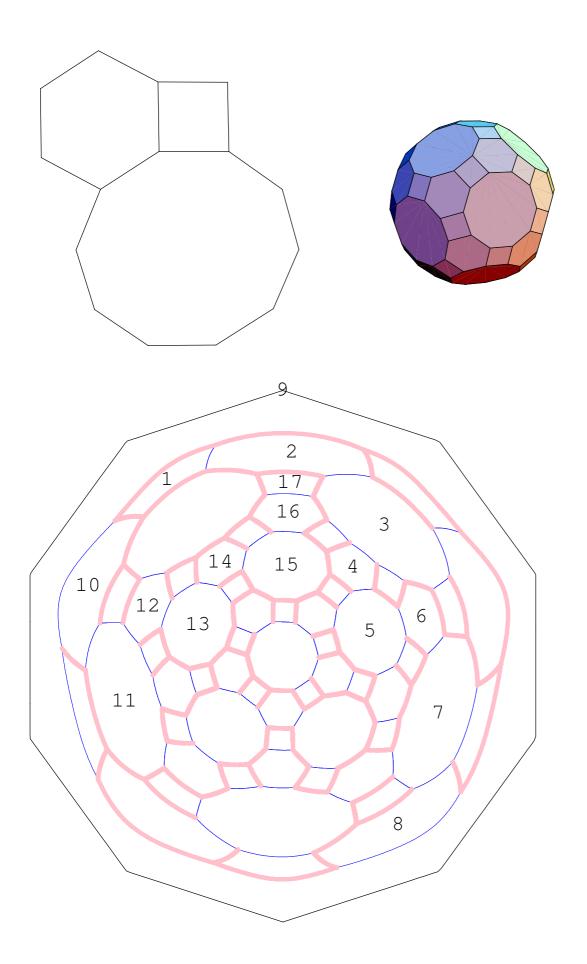


rhombicosidodecahedron

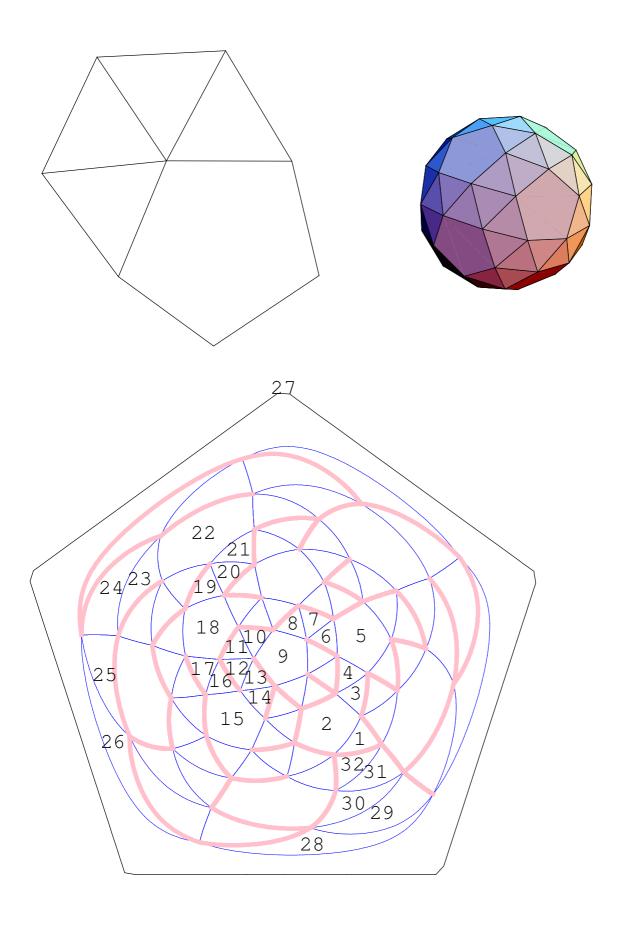


truncated icosidodecahedron

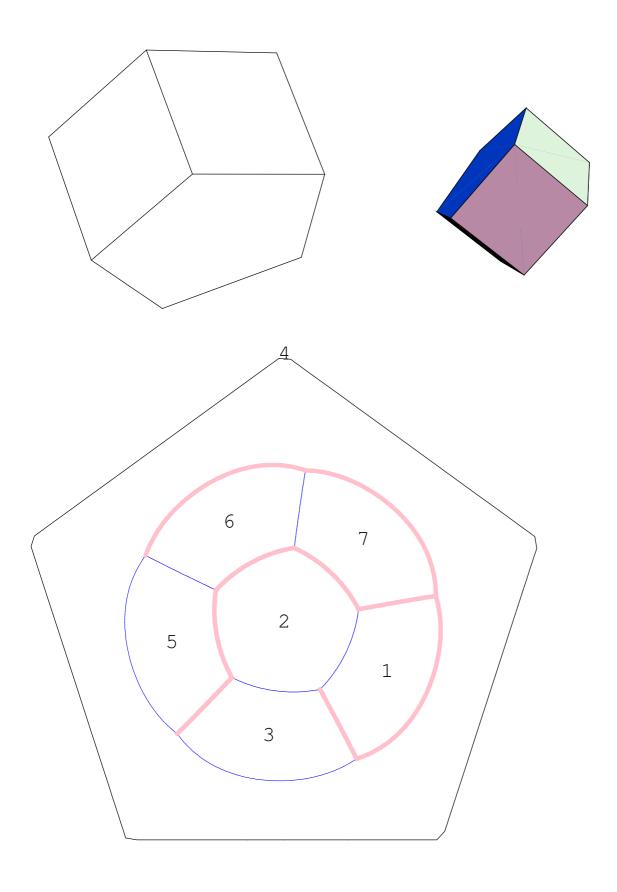
{4, 6, 10}



snub dodecahedron $\{3, 3, 3, 3, 5\}$

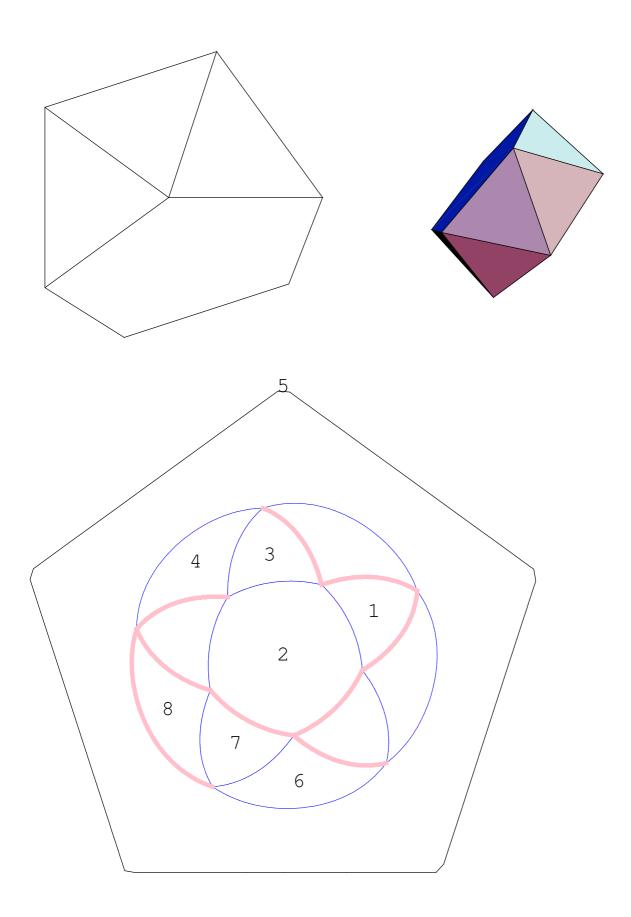


pentagonal prism $\{4, 4, 5\}$



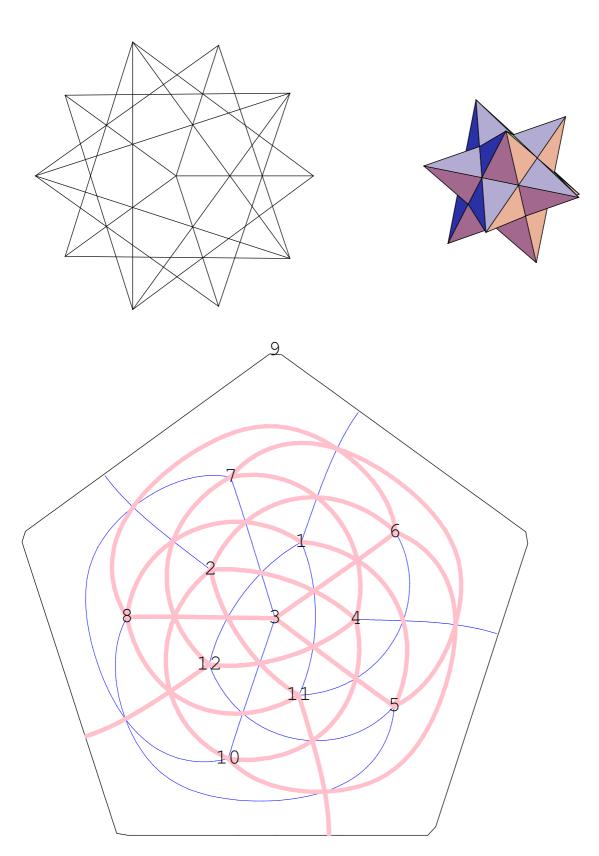
pentagonal antiprism

 ${3, 3, 3, 5}$



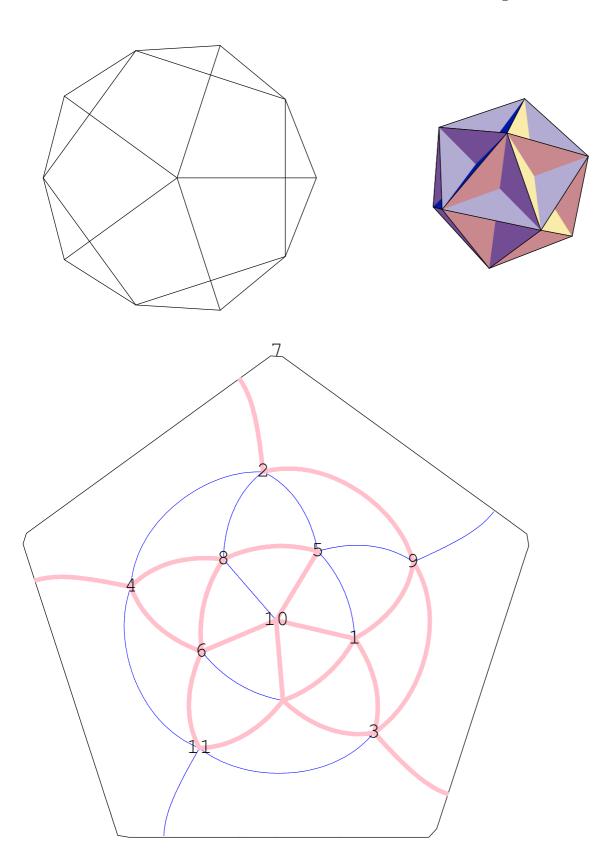
small stellated dodecahedron

$$\left\{\frac{5}{2}, \frac{5}{2}, \frac{5}{2}, \frac{5}{2}, \frac{5}{2}\right\}$$



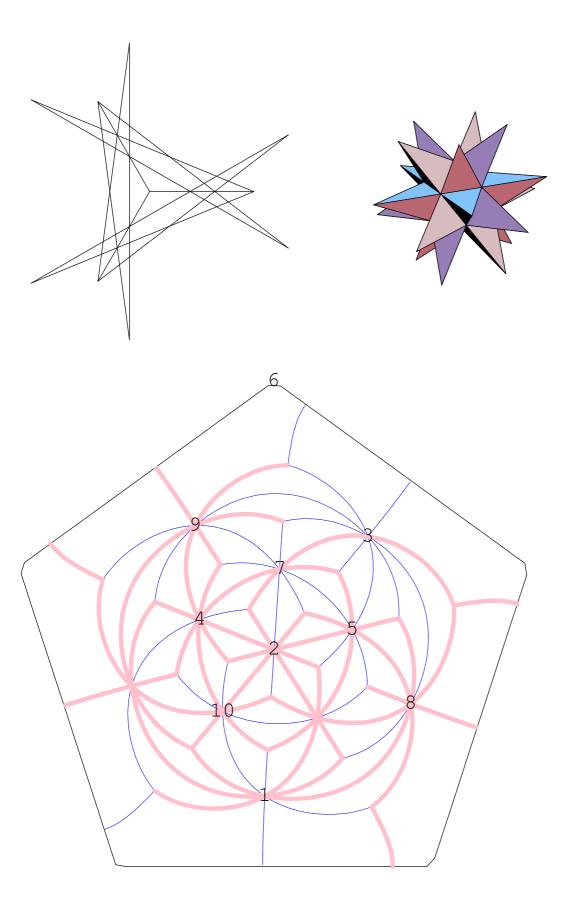
great dodecahedron

 $\frac{1}{2}$ {5, 5, 5, 5, 5}



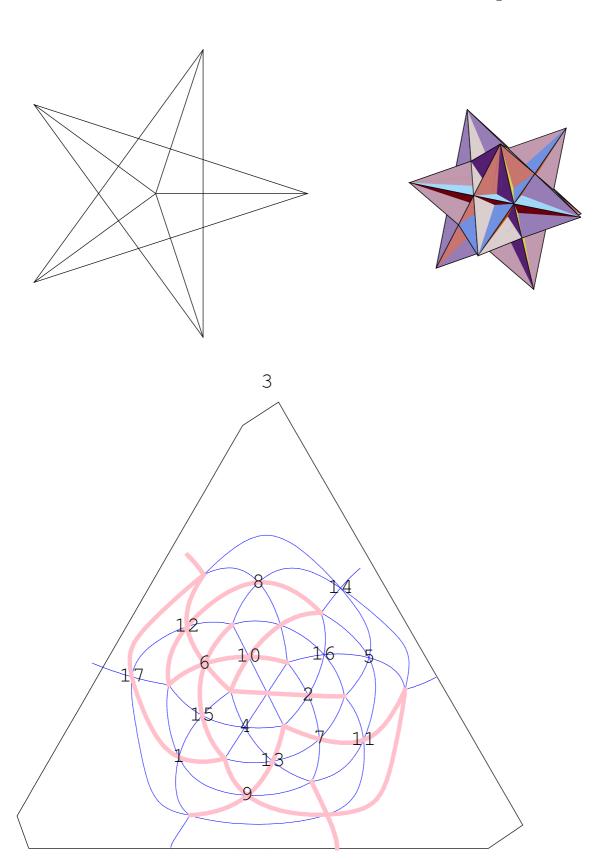
great stellated dodecahedron

$$\left\{\frac{5}{2}, \frac{5}{2}, \frac{5}{2}\right\}$$



great icosahedron

 $\frac{1}{2}$ {3, 3, 3, 3, 3}



dodecadodecahedron

 $\left\{\frac{5}{2}, 5, \frac{5}{2}, 5\right\}$

