Mazes on Uniform Polyhedra

Introduction

Let as take an example. We are given a uniform polyhedron.

 ${4, 3, 4, 4}$

In Mathematica the polyhedron is given by a list of faces and with a list of koordinates of vertices [Roman E. Maeder, The Mathematica Programmer II, Academic Press1996]. The list of faces consists of a list of lists, where a face is represented by a list of vertices, which is given by a matrix. Let us show the first five faces:

$$\begin{pmatrix}
\{1, 2, 6, 3\} \\
\{1, 3, 4\} \\
\{1, 4, 10, 5\} \\
\{1, 5, 8, 2\} \\
\{2, 8, 14, 7\}
\end{pmatrix}$$

The nest two figures represent faces and vertices. The polyhedron is projected onto supescribed sphere and the sphere is projected by a cartographic projection.

The problem is to find the path from the black dot to gray dot, where thick lines represent walls of a maze.

The solution is given by a list of faces passed from the black to gray dot.

Problems

{4, 4, 5}

{4, 4, 6}

{4, 4, 8}

{4, 4, 9}

 ${3, 3, 3, 5}$

 ${3, 3, 3, 6}$

{3, 3, 3, 7}

{3, 3, 3, 8}

$$\left\{4,\,4,\,\frac{5}{2}\right\}$$

$$\{4, 4, \frac{7}{2}\}$$

$$\{4, 4, \frac{9}{2}\}$$

$$\left\{4,\,4,\,\frac{7}{3}\right\}$$

$$\{4, 4, \frac{8}{3}\}$$

$$\left\{4,\,4,\,\frac{10}{3}\right\}$$

$${3, 3, 3, \frac{5}{2}}$$

$${3, 3, 3, \frac{7}{2}}$$

$${3, 3, 3, \frac{9}{2}}$$

$$\left\{3, 3, 3, \frac{5}{3}\right\}$$

$${3, 3, 3, \frac{7}{3}}$$

$${3, 3, 3, \frac{8}{3}}$$

Solutions

{4, 4, 5}

{4, 4, 6}

{4, 4, 8}

{4, 4, 9}

{3, 3, 3, 5}

{3, 3, 3, 6}

{3, 3, 3, 7}

{3, 3, 3, 8}

$$\left\{4,\,4,\,\frac{5}{2}\right\}$$

$$\{4, 4, \frac{7}{2}\}$$

$$\{4, 4, \frac{9}{2}\}$$

$$\left\{4,\,4,\,\frac{7}{3}\right\}$$

$$\{4, 4, \frac{8}{3}\}$$

$$\left\{4,\,4,\,\frac{10}{3}\right\}$$

$${3, 3, 3, \frac{5}{2}}$$

$${3, 3, 3, \frac{7}{2}}$$

$${3, 3, 3, \frac{9}{2}}$$

$$\left\{3, 3, 3, \frac{5}{3}\right\}$$

$${3, 3, 3, \frac{7}{3}}$$

$${3, 3, 3, \frac{8}{3}}$$

